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cA = element of surface area

Cf = specific heat at constant pressure

C1 cylinder diameter

EL, dlE, aE = molecular energy fluxes incident,
reflected and diffusely reflected
from aA per unit time, Eq. 2.2

molecular velocity distribution function,
Eq. 2.5

= Maxwellian distribution function, Eq. 2.6

, "'f = factors of the velocity distribution
function, Eq. 2.12

Ho) H?.•) = functions of $ defined by Eq. 3.5

Sheat transfer coefficient per unit area,
Eqo 3.11

It6 = modified Bessel functions of zero and
first order

3 = number of internal degrees of freedom

K = Boltzmann Is constant

L = length of cylinder

NI Mach number (U/Va)

molecular mass

'dL , CWw = number of molecules incident on and
diffusely reflected from c per unit
time, Eq. 2.9

= Nusselt number (hA/C)



4) pressure

Prandtl number ( .rýL/I

+AW, ) • normal stress deviation terms, Eq. 2.5

cLQ L heat removed from GO by sinks inside
the cylinder (per unit time)

Stotal heat removed from the cylinder
(per unit time)

'K) ' = heat flux terms, Eq. 2.5

R= gas constant

Reynolds number (,U at I//)

,CU radiant energy fluxes incident on, and
reflected from, dA per unit time, Eq. 2.1

recovery factor, Eq. 3.6

}o A K partial recovery factors, Eq. 3.10

S= molecular speed ratio, Eq. 3.3

ST Stanton number (Nu/1Reln.)

STe STO ) = partial Stanton numbers, Eq. 3.15

T = gas temperature

Taw. = equilibrium temperature of the cylinder
wall in the absence of heat transfer,
Eqs. 3.4 and 3.6

To -stagnation temperature

T = cylinder wall temperature

UAV¶ w gas velocity components



LALV W - molecular velocity components in
X '9 8 , ' direction, Fig. 1

. NJ e N' 1I -- molecular velocity components in
A # d'1 f', direction, Fig. 1

V,• V2.) characteristic velocities associated
with various degrees of freedom,
Eq. 2.11

Va accoustic speed (IY"T' )

X) j )• = coordinates referred to flow direction,
Fig. 1

- coordinates referred to surface element,
Fig. 1

S=L thermal accoomodation coefficient,
Eq. 2.2

ratio of specific heats

e--angle between surface normal and flow
direction, Fig. 1

S-C thermal conductivity

/U = viscosity

p - gas density

-, • ---- shear stress terms, Eq. 2.5
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1.0 INTRODUCTION

The heat transfer to a body in free molecule flow has been

determined theoretically by Tsien (Refo. 1) Stalder and Jukoff (Ref. 2)

and others (Refs. 3 and 4). Experiments by Stalder, Creager and Goodwin

(Refs. 3 and 5) have provided some confirmation of the theoretical de-

velopments,

These investigations have been confined to gas flows in Max-

wallian equilibriun. The present report is a continuation of Reference

6 in which the aerodynamic forces on a cylinder were determined for the

case of a non-uniform gas (i.e., one in which heat flux or viscous stresses

are present).

It is assumed that the right circular cylinder, which is ori-

ented perpendicular to the gas flow, has so large a thermal conductivity

that it has a uniform wall temperature. Possible end effects are neglected.

The results depend on a knowledge of the molecular velocity dis-

tribution and the distribution assumed here is the one proposed by Grad

(Ref. 7). The results are complete for the monatomic case but only

approximate for the polyatomic case.

For the sake of brevity, much of the general discussion given

in Reference 6 has not been repeated here.

2.0 METHOD OF ANALYSIS

2.1 Monatomic G_

The general method of analysis is the same as ii• Reference 6

and the energy balance for a differential area is written

CdEl 4-dRK. dE&~ 4-dR a (2.1)
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Assuming no radiation and using the thermal accommodation coeffi-

cient

oLE L - ot E,ý

CLEL - cLEw (2.2)

one may rewrite the energy balance for convection

1 LQ = ctE - d-Ew (2.3)
.O

The incident energy flux per unit area per unit time may-be

expressed

0o0 o 0o

2. JJ j 
(2.4)

"-00 -4•0

%here is the distribution function used in Reference 6,

I 2.pL -f AX(Lk U)z 1- 4f V ,+4 ýM& W z

2u. t ) ( (L- UU) - z •t1+, , WU

__-vV+ 
+ (2.5)

5~RT W
and

) VRT (2.6)

Inoept for the molecular velocit oomponents, all the variables

appearing in Iqs, 2.5 and 2.6, are treated as constants throughout

the region occupied by the cylinder, The relations between velocity

eomponents are given bV

UL -- ' coso + v OSL-A "
V - LA' SLnY -- V'COS6 (2.7)

W= W1
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The energy flux per unit area per unit time due to diffuse6y

reflected molecules is

YNEw - T• dLN
SAAd- A (2.8)

and since &Ew/&A is to be computed on the assumption that all

of the molecules are reflected diffusely

- -A - d.A J-0 0 (2.9)

Combining Eqs. 2.39 2o4, 2.8 and 2.9 and integrating over the cy-

linder a 0 0

Q L_%__V__ V 12

(2.10)

2.2 Polyatomic Gas

In a polyatomic gas there are internal energies of rotation

or of vibration or of both. To calculate the incident energy flux

in this case, one should use a distribution function which includes

the distribution of rotational and vibrational energies (e.g., see

Ref. 8). If the gas molecules havej+3 degrees of freedom of motion

(thus, j = 0 for a monatomic gas) the number of incident molecules

may be written in the form

-00 00 0
f. J{{ w-- } V) b%) V)'*

(2.11)

&I &v'd , I V, , .Vj
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where, for the sake of simplicity in illustrating a point, the clas-

sical mechanical approach has been adopted and a characteristic

velocity has been associated with each degree of freedom of motion.

Actually, an accurate calculation would require a quantum-mechani-

cal formulation,

Assuming that the total energy can be expressed as a sum of

energies of each degree of freedom, the distribution function for

Maxwellian equilbrium may be expressed in factored form,

W) a )~(~y' )A '){ (V) ~.f('V'j (2.12)

and the number per unit area of diffusely reflected molecules takes

the form
Sf

-00

f f J (2.3-3)

This separation of variables also occurs in the integration for

the energy flux per unit area due to diffusely reflected molecules.

Making the further assumption that the energy associated with

each degreee of freedom has a quadratic dependence on the velocity

involved, a straight-forward calculation yields, for the diffusely

reflected energy flux (Ref. 9, p. 93)

=K ,, + j KTw _AN
&LA 2 dL A ( 4

For the non-Maxwellian case, one cannot factor the distribu-

tion function as in Eq. 2.12 and the corresponding relations for

the incident energy flux presumably would become very complicated,

As a first approximation, however, it seems reasonable to assume

a similar separation of translational and internal energies so that
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2 2 A (2.15)

-00-@00

Combining Eqs. 2.3, 2.9, 2.14, and 2.15, and.integrating

over the cylinder CAO 0

q=

.1_= -ma f,-]o•/) +[,zjRT(slz

4 -T

- (4 +j )PTw) LL ý cld-V d (2.16)

"3.0 RESULTS

Performing the integrations indicated in Eq. 2.16 one has

Q =,]f oLLpURTc. jjs+( 7 j ),S

+ S4 ,6j S/S-/

+ (4 .j~(2-z +jS +(%•/2+[ 9 S7- (4 4/)}

-jr(SYZ) + [ 12 +j](S.L/Z)

fW'cLLp.URTwO (++

( s / z - ( s 2 } ] 
(3 .1 )



where 1 has been eliminated by the relation

+~ f15~ 4*-f& (3.2)

I3: and I., are the modified Bessel functions and G is the molecular

speed ratio

S = U F22- - M (3.3)

Eq. 3.1 is valid for a monatomic gas (j - 0) and, under the assump-

tions of Eqso 2.14 and 2.15, would also be valid for a polyatomic gas.

The results of Eq. 3.1 agree with those of Refs. 3 and 4 for the uni-

form case. It will be observed that there are no terms corresponding

to a shear stress -. , nor to a heat flux, Qs , in the transverse

direction. This was not the case for the aerodynamic force calcu-

lations of Ref. 6. Since these two terms are the principal non-uni-
formities in a boundary layer flow, it follows that a heat transfer

type of free molecule probe is particularly advantageous for boundary

layer surveys.

If, by Taw, one denotes the equilbrium temperature assumed

by the cylinder in the absence of heat transfer (adiabatic wall tem-

perature), then Eq. 3.1 may be solved for T-a/ as a function

1,L/f •f•/f and ./?UaU In the resulting expression for Taw /i-

the denominator is expanded in powers of fw/p j f .If and

By neglecting squares and higher powers t one obtains, for a monatomic

Sgas.

Hot
lit
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where:

k1o H No(s) =F 0 )
F.o (S)G

WWI (S)•

F (s)= 4"+ +1o(slZ1 + )4-- 53'L)

F,,,(s) (s'./2 .4.3/2 )Lo(S-/2z + (SZ2 - I)T, (S 1/)

Fe,(s) Z= + (,zs32/)I,(sz/z)

GoS = (•-z)+ r•:o( /z)+ s',s )Go,,S ( ( 4 -S - -) , (S'-/+) L(S&/ 2

Gr%, (S.) -:.(.+S/5)laS/2 - 051Sl (S%/2

The functions an., $., l and 4 1,are presented graphi-

cally in lig. 2.

The recovery factor is defined tu

Taw -T
U- T 0 -(T 3.6)



where To is the stagnation temperature. Using the relation

T 30.7)

one obtains

or using Eq. 3.4

+4.t- 14%V (3.9)
f fU

Eq. 3.9 may be written

AO +} . (3.10)

These Opartial recovery factors% are presented graphically, for a mona-

tomic gas, in Fig. 3.

One defines the heat transfer coefficient per unit area as

u~m~--T~~)(3.11)

and the Stanton number is

ST h(3.12)
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Combining Eqs. 3,1, 3.11 and 3.12

4- S- ((sYU( 2/)

S2 IT(sY2) + - W- :2y/2)

W/4 +

S5• d t(3.13)

where use has been made of

2(3.1)

Eq. 3.13 may be written

L ST fr- + P (3.15)

These *partial Stanton numbers" are presented graphically,

for a monatomic gas in Fig. 4.

Inspection of Fig. 4, reveals that the partial Stanton numbers

corresponding to the non-uniform terms are all small compared to the

Stanton number, STo., for the uniform case. Unless a gas flow is very

non-uniform, i.e., if the flow itself is in the continuum or slip-flow
region, the quantities pwand p% are small compared to + . It follows

that the energy balance will be effected only slightly by the contribu-

tions arising from the viscous stress terms.
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